

Difficulty: Mastery 1

GOAL

Problem 1 of 11

Problem #

The Metropolis algorithm is chosen to sample the posterior distribution of a

Assume the following:

parameter θ .

An unnormalized posterior defined by the function

$$f(heta) = \left\{ egin{array}{ll} 0, & ext{for} & heta < 0 \ e^{- heta/2}, & ext{for} & heta \geq 0 \end{array}
ight.$$

- **Monitor Difficulty Level**

- A sampler initialization point of 3.0 before Iteration 1
- Each proposal in the Metropolis algorithm is the sum of the current position of the sampler and the step within a given iteration
- A proposal is accepted if the acceptance ratio, $f(\theta_{\text{prop}})/f(\theta_{\text{curr}})$, is greater than the random uniform number

The first four iterations for the sampler are provided in the table below.

Iteration	Step	Random Uniform Number
1	1.0	0.820
2	-1.4	0.939
3	2.2	0.233
4	-3.7	0.468

Calculate the position of the sampler after iteration 4.

- Less than 1.0
- At least 1.0, but less than 2.0
- At least 2.0, but less than 3.0
- At least 3.0, but less than 4.0
- **Helpful Strategies To Get You Started**

At least 4.0

Help Me Start

Let s be the step (starting from Step=1.0), we have $\theta_{\mathbf{p}} = \theta_{\mathbf{c}} + s$. The acceptance ratio is

$$rac{f(heta_{
m p})}{f(heta_{
m c})} = rac{e^{- heta_{
m p}/2}}{e^{- heta_{
m c}/2}} = e^{-s/2}.$$

Comprehensive Solutions with Alternative Solutions **When Available**

Solution

Let s be the step, we have $\theta_{\mathbf{p}} = \theta_{\mathbf{c}} + s$. The acceptance ratio is

Graphs and Other Solution Techniques Demonstrated When Available

 $\frac{f(\theta_{\rm p})}{f(\theta_{\rm c})} = \frac{e^{-\theta_{\rm p}/2}}{e^{-\theta_{\rm c}/2}} = e^{-s/2}.$ For the first iteration, we have $heta_0=3$ and $s_1=1$. Hence, $heta_{ extbf{C}}=3$ and $heta_{
m p}=3+s_1=4$. The acceptance ratio is $e^{-s_1/2}=e^{-1/2}=0.607$. The ratio is

less than the first random number 0.82 and hence we should stay at the current point: $\theta_1 = \theta_C = 3$.

For the second iteration, we have $\theta_1 = 3$ and $s_2 = -1.4$. Hence, $\theta_{\rm C} = 3$ and $heta_{
m p} = 3 + (-1.4) = 1.6$. The acceptance ratio is $e^{-s_2/2} = e^{1.4/2} = 2.014$. The ratio is greater than one (and certainly greater then 0.939) and hence we should move to the proposed point: $\theta_2 = \theta_p = 1.6$.

For the third iteration, we have $\theta_2 = 1.6$ and $s_3 = 2.2$. Hence, $\theta_C = 1.6$ and $heta_{
m p} = 1.6 + 2.2 = 3.8$. The acceptance ratio is $e^{-s_3/2} = e^{-2.2/2} = 0.333$. The ratio is greater than the third random number 0.233 and hence we should move to the proposed point: $\theta_3 = \theta_D = 3.8$.

For the fourth iteration, we have $\theta_3=3.8$ and $s_4=-3.7$, we have $\theta_{\rm C}=3.8$ and $heta_{
m p} = 3.8 + (-3.7) = 0.1$. The acceptance ratio is $e^{-s_4/2} = e^{3.7/2} = 6.36$. The ratio is greater than one and hence we should move to the proposed point:

 $\theta_4 = \theta_{\rm p} = 0.1.$

Leave Feedback By Rating Problems